Note

This page was generated from _notebooks/tutorial07_mf6_data.ipynb.
Interactive online version: Binder badge

MODFLOW 6: Working with MODFLOW Grid Array Data

This tutorial shows how to view, access, and change the underlying data variables for MODFLOW 6 objects in FloPy. Interaction with a FloPy MODFLOW 6 model is different from other models, such as MODFLOW-2005, MT3D, and SEAWAT, for example.

FloPy stores model data in data objects (MFDataArray, MFDataList, MFDataScalar objects) that are accessible from packages. Data can be added to a package by using the appropriate parameters when the package is constructed and through package attributes.

The MODFLOW 6 simulation structure is arranged in the following generalized way:

Simulation --> Package --> DATA

Simulation --> Model --> Package (--> Package) --> DATA

This tutorial focuses on MODFLOW grid array data from the GridData and other similar blocks. These blocks contain data in a one or more dimensional array format organized by dimensions, which can include layer, row, column, and stress period. These data are stored by FloPy in a MFArray or MFTransientArray object and a referred to as array data.

Introduction to MODFLOW Array Data

MODFLOW array data use the MFArray or MFTransientArray FloPy classes and are stored in numpy ndarrays. Most MODFLOW array data are two (row, column) or three (layer, row, column) dimensional and represent data on the model grid. Other MODFLOW array data contain data by stress period. The following list summarizes the different types of MODFLOW array data.

  • Time-invariant multi-dimensional array data. This includes:

    1. One and two dimensional arrays that do not have a layer dimension. Examples include top, delc, and delr.

    2. Three dimensional arrays that can contain a layer dimension. Examples include botm, idomain, and k.

  • Transient arrays that can change with time and therefore contain arrays of data for one or more stress periods. Examples include irch and recharge in the RCHA package.

In the example below a three dimensional ndarray is constructed for the DIS package’s botm array. First, the a simulation and groundwater-flow model are set up.

[1]:
# package import
import os
from pathlib import Path
from tempfile import TemporaryDirectory
[2]:
import numpy as np
[3]:
import flopy
[4]:
# set up where simulation workspace will be stored
temp_dir = TemporaryDirectory()
workspace = temp_dir.name
name = "tutorial07_mf6_data"
[5]:
# create the FloPy simulation and tdis objects
sim = flopy.mf6.MFSimulation(
    sim_name=name, exe_name="mf6", version="mf6", sim_ws=workspace
)
tdis = flopy.mf6.modflow.mftdis.ModflowTdis(
    sim,
    pname="tdis",
    time_units="DAYS",
    nper=2,
    perioddata=[(1.0, 1, 1.0), (1.0, 1, 1.0)],
)
# create the Flopy groundwater flow (gwf) model object
model_nam_file = f"{name}.nam"
gwf = flopy.mf6.ModflowGwf(sim, modelname=name, model_nam_file=model_nam_file)
# create the flopy iterative model solver (ims) package object
ims = flopy.mf6.modflow.mfims.ModflowIms(sim, pname="ims", complexity="SIMPLE")

Then a three-dimensional ndarray of floating point values is created using numpy’s linspace method.

[6]:
bot = np.linspace(-50.0 / 3.0, -3.0, 3)
delrow = delcol = 4.0

The DIS package is then created passing the three-dimensional array to the botm parameter. The botm array defines the model’s cell bottom elevations.

[7]:
dis = flopy.mf6.modflow.mfgwfdis.ModflowGwfdis(
    gwf,
    pname="dis",
    nogrb=True,
    nlay=3,
    nrow=10,
    ncol=10,
    delr=delrow,
    delc=delcol,
    top=0.0,
    botm=bot,
)

Adding MODFLOW Grid Array Data

MODFLOW grid array data, like the data found in the NPF package’s GridData block, can be specified as:

  1. A constant value

  2. A n-dimensional list

  3. A numpy ndarray

Additionally, layered grid data (generally arrays with a layer dimension) can be specified by layer.

In the example below icelltype is specified as constants by layer, k is specified as a numpy ndarray, k22 is specified as an array by layer, and k33 is specified as a constant.

First k is set up as a 3 layer, by 10 row, by 10 column array with all values set to 10.0 using numpy’s full method.

[8]:
k = np.full((3, 10, 10), 10.0)

Next k22 is set up as a three dimensional list of nested lists. This option can be useful for those that are familiar with python lists but are not familiar with the numpy library.

[9]:
k22_row = []
for row in range(0, 10):
    k22_row.append(8.0)
k22_layer = []
for col in range(0, 10):
    k22_layer.append(k22_row)
k22 = [k22_layer, k22_layer, k22_layer]

K33 is set up as a single constant value. Whenever an array has all the same values the easiest and most efficient way to set it up is as a constant value. Constant values also take less space to store.

[10]:
k33 = 1.0

The k, k22, and k33 values defined above are then passed in on construction of the npf package.

[11]:
npf = flopy.mf6.ModflowGwfnpf(
    gwf,
    pname="npf",
    save_flows=True,
    icelltype=[1, 1, 1],
    k=k,
    k22=k22,
    k33=k33,
    xt3doptions="xt3d rhs",
    rewet_record="REWET WETFCT 1.0 IWETIT 1 IHDWET 0",
)
<flopy.mf6.data.mfstructure.MFDataItemStructure object at 0x7f780a30b190>
<flopy.mf6.data.mfstructure.MFDataItemStructure object at 0x7f780a30b1c0>

Layered Data

When we look at what will be written to the npf input file, we see that the entire npf.k22 array is written as one long array with the number of values equal to nlay * nrow * ncol. And this whole-array specification may be of use in some cases. Often times, however, it is easier to work with each layer separately. An MFArray object, such as npf.k22 can be converted to a layered array as follows.

[12]:
npf.k22.make_layered()

By changing npf.k22 to layered, we are then able to manage each layer separately. Before doing so, however, we need to pass in data that can be separated into three layers. An array of the correct size is one option.

[13]:
shp = npf.k22.array.shape
a = np.arange(shp[0] * shp[1] * shp[2]).reshape(shp)
npf.k22.set_data(a)

Now that npf.k22 has been set to be layered, if we print information about it, we see that each layer is stored separately, however, npf.k22.array will still return a full three-dimensional array.

[14]:
print(type(npf.k22))
print(npf.k22)
<class 'flopy.mf6.data.mfdataarray.MFArray'>
Layer_1{internal}
([[ 0  1  2  3  4  5  6  7  8  9]
 [10 11 12 13 14 15 16 17 18 19]
 [20 21 22 23 24 25 26 27 28 29]
 [30 31 32 33 34 35 36 37 38 39]
 [40 41 42 43 44 45 46 47 48 49]
 [50 51 52 53 54 55 56 57 58 59]
 [60 61 62 63 64 65 66 67 68 69]
 [70 71 72 73 74 75 76 77 78 79]
 [80 81 82 83 84 85 86 87 88 89]
 [90 91 92 93 94 95 96 97 98 99]])
Layer_2{internal}
([[100 101 102 103 104 105 106 107 108 109]
 [110 111 112 113 114 115 116 117 118 119]
 [120 121 122 123 124 125 126 127 128 129]
 [130 131 132 133 134 135 136 137 138 139]
 [140 141 142 143 144 145 146 147 148 149]
 [150 151 152 153 154 155 156 157 158 159]
 [160 161 162 163 164 165 166 167 168 169]
 [170 171 172 173 174 175 176 177 178 179]
 [180 181 182 183 184 185 186 187 188 189]
 [190 191 192 193 194 195 196 197 198 199]])
Layer_3{internal}
([[200 201 202 203 204 205 206 207 208 209]
 [210 211 212 213 214 215 216 217 218 219]
 [220 221 222 223 224 225 226 227 228 229]
 [230 231 232 233 234 235 236 237 238 239]
 [240 241 242 243 244 245 246 247 248 249]
 [250 251 252 253 254 255 256 257 258 259]
 [260 261 262 263 264 265 266 267 268 269]
 [270 271 272 273 274 275 276 277 278 279]
 [280 281 282 283 284 285 286 287 288 289]
 [290 291 292 293 294 295 296 297 298 299]])

We also see that each layer is printed separately to the npf Package input file, and that the LAYERED keyword is activated:

[15]:
print(npf.k22.get_file_entry())
  k22  LAYERED
    INTERNAL  FACTOR  1.0
           0.00000000       1.00000000       2.00000000       3.00000000       4.00000000       5.00000000       6.00000000       7.00000000       8.00000000       9.00000000
          10.00000000      11.00000000      12.00000000      13.00000000      14.00000000      15.00000000      16.00000000      17.00000000      18.00000000      19.00000000
          20.00000000      21.00000000      22.00000000      23.00000000      24.00000000      25.00000000      26.00000000      27.00000000      28.00000000      29.00000000
          30.00000000      31.00000000      32.00000000      33.00000000      34.00000000      35.00000000      36.00000000      37.00000000      38.00000000      39.00000000
          40.00000000      41.00000000      42.00000000      43.00000000      44.00000000      45.00000000      46.00000000      47.00000000      48.00000000      49.00000000
          50.00000000      51.00000000      52.00000000      53.00000000      54.00000000      55.00000000      56.00000000      57.00000000      58.00000000      59.00000000
          60.00000000      61.00000000      62.00000000      63.00000000      64.00000000      65.00000000      66.00000000      67.00000000      68.00000000      69.00000000
          70.00000000      71.00000000      72.00000000      73.00000000      74.00000000      75.00000000      76.00000000      77.00000000      78.00000000      79.00000000
          80.00000000      81.00000000      82.00000000      83.00000000      84.00000000      85.00000000      86.00000000      87.00000000      88.00000000      89.00000000
          90.00000000      91.00000000      92.00000000      93.00000000      94.00000000      95.00000000      96.00000000      97.00000000      98.00000000      99.00000000
    INTERNAL  FACTOR  1.0
         100.00000000     101.00000000     102.00000000     103.00000000     104.00000000     105.00000000     106.00000000     107.00000000     108.00000000     109.00000000
         110.00000000     111.00000000     112.00000000     113.00000000     114.00000000     115.00000000     116.00000000     117.00000000     118.00000000     119.00000000
         120.00000000     121.00000000     122.00000000     123.00000000     124.00000000     125.00000000     126.00000000     127.00000000     128.00000000     129.00000000
         130.00000000     131.00000000     132.00000000     133.00000000     134.00000000     135.00000000     136.00000000     137.00000000     138.00000000     139.00000000
         140.00000000     141.00000000     142.00000000     143.00000000     144.00000000     145.00000000     146.00000000     147.00000000     148.00000000     149.00000000
         150.00000000     151.00000000     152.00000000     153.00000000     154.00000000     155.00000000     156.00000000     157.00000000     158.00000000     159.00000000
         160.00000000     161.00000000     162.00000000     163.00000000     164.00000000     165.00000000     166.00000000     167.00000000     168.00000000     169.00000000
         170.00000000     171.00000000     172.00000000     173.00000000     174.00000000     175.00000000     176.00000000     177.00000000     178.00000000     179.00000000
         180.00000000     181.00000000     182.00000000     183.00000000     184.00000000     185.00000000     186.00000000     187.00000000     188.00000000     189.00000000
         190.00000000     191.00000000     192.00000000     193.00000000     194.00000000     195.00000000     196.00000000     197.00000000     198.00000000     199.00000000
    INTERNAL  FACTOR  1.0
         200.00000000     201.00000000     202.00000000     203.00000000     204.00000000     205.00000000     206.00000000     207.00000000     208.00000000     209.00000000
         210.00000000     211.00000000     212.00000000     213.00000000     214.00000000     215.00000000     216.00000000     217.00000000     218.00000000     219.00000000
         220.00000000     221.00000000     222.00000000     223.00000000     224.00000000     225.00000000     226.00000000     227.00000000     228.00000000     229.00000000
         230.00000000     231.00000000     232.00000000     233.00000000     234.00000000     235.00000000     236.00000000     237.00000000     238.00000000     239.00000000
         240.00000000     241.00000000     242.00000000     243.00000000     244.00000000     245.00000000     246.00000000     247.00000000     248.00000000     249.00000000
         250.00000000     251.00000000     252.00000000     253.00000000     254.00000000     255.00000000     256.00000000     257.00000000     258.00000000     259.00000000
         260.00000000     261.00000000     262.00000000     263.00000000     264.00000000     265.00000000     266.00000000     267.00000000     268.00000000     269.00000000
         270.00000000     271.00000000     272.00000000     273.00000000     274.00000000     275.00000000     276.00000000     277.00000000     278.00000000     279.00000000
         280.00000000     281.00000000     282.00000000     283.00000000     284.00000000     285.00000000     286.00000000     287.00000000     288.00000000     289.00000000
         290.00000000     291.00000000     292.00000000     293.00000000     294.00000000     295.00000000     296.00000000     297.00000000     298.00000000     299.00000000

Working with a layered array provides lots of flexibility. For example, constants can be set for some layers, but arrays for others:

[16]:
npf.k22.set_data([1, a[2], 200])
print(npf.k22.get_file_entry())
  k22  LAYERED
    CONSTANT       1.00000000
    INTERNAL  FACTOR  1.0
         200.00000000     201.00000000     202.00000000     203.00000000     204.00000000     205.00000000     206.00000000     207.00000000     208.00000000     209.00000000
         210.00000000     211.00000000     212.00000000     213.00000000     214.00000000     215.00000000     216.00000000     217.00000000     218.00000000     219.00000000
         220.00000000     221.00000000     222.00000000     223.00000000     224.00000000     225.00000000     226.00000000     227.00000000     228.00000000     229.00000000
         230.00000000     231.00000000     232.00000000     233.00000000     234.00000000     235.00000000     236.00000000     237.00000000     238.00000000     239.00000000
         240.00000000     241.00000000     242.00000000     243.00000000     244.00000000     245.00000000     246.00000000     247.00000000     248.00000000     249.00000000
         250.00000000     251.00000000     252.00000000     253.00000000     254.00000000     255.00000000     256.00000000     257.00000000     258.00000000     259.00000000
         260.00000000     261.00000000     262.00000000     263.00000000     264.00000000     265.00000000     266.00000000     267.00000000     268.00000000     269.00000000
         270.00000000     271.00000000     272.00000000     273.00000000     274.00000000     275.00000000     276.00000000     277.00000000     278.00000000     279.00000000
         280.00000000     281.00000000     282.00000000     283.00000000     284.00000000     285.00000000     286.00000000     287.00000000     288.00000000     289.00000000
         290.00000000     291.00000000     292.00000000     293.00000000     294.00000000     295.00000000     296.00000000     297.00000000     298.00000000     299.00000000
    CONSTANT     200.00000000

To gain full control over an individual layers, layer information can be provided as a dictionary:

[17]:
a0 = {"factor": 0.5, "iprn": 1, "data": 100 * np.ones((10, 10))}
a1 = 50
a2 = {"factor": 1.0, "iprn": 14, "data": 30 * np.ones((10, 10))}
npf.k22.set_data([a0, a1, a2])
print(npf.k22.get_file_entry())
  k22  LAYERED
    INTERNAL  FACTOR  0.5  IPRN  1
         100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000
         100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000
         100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000
         100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000
         100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000
         100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000
         100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000
         100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000
         100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000
         100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000     100.00000000
    CONSTANT      50.00000000
    INTERNAL  FACTOR  1.0  IPRN  14
          30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000
          30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000
          30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000
          30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000
          30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000
          30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000
          30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000
          30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000
          30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000
          30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000      30.00000000

Here we say that the FACTOR has been set to 0.5 for the first layer and an alternative print flag is set for the last layer.

Because we are specifying a factor for the top layer, we can also see that the get_data() method returns the array without the factor applied

[18]:
print(npf.k22.get_data())
[[[100. 100. 100. 100. 100. 100. 100. 100. 100. 100.]
  [100. 100. 100. 100. 100. 100. 100. 100. 100. 100.]
  [100. 100. 100. 100. 100. 100. 100. 100. 100. 100.]
  [100. 100. 100. 100. 100. 100. 100. 100. 100. 100.]
  [100. 100. 100. 100. 100. 100. 100. 100. 100. 100.]
  [100. 100. 100. 100. 100. 100. 100. 100. 100. 100.]
  [100. 100. 100. 100. 100. 100. 100. 100. 100. 100.]
  [100. 100. 100. 100. 100. 100. 100. 100. 100. 100.]
  [100. 100. 100. 100. 100. 100. 100. 100. 100. 100.]
  [100. 100. 100. 100. 100. 100. 100. 100. 100. 100.]]

 [[ 50.  50.  50.  50.  50.  50.  50.  50.  50.  50.]
  [ 50.  50.  50.  50.  50.  50.  50.  50.  50.  50.]
  [ 50.  50.  50.  50.  50.  50.  50.  50.  50.  50.]
  [ 50.  50.  50.  50.  50.  50.  50.  50.  50.  50.]
  [ 50.  50.  50.  50.  50.  50.  50.  50.  50.  50.]
  [ 50.  50.  50.  50.  50.  50.  50.  50.  50.  50.]
  [ 50.  50.  50.  50.  50.  50.  50.  50.  50.  50.]
  [ 50.  50.  50.  50.  50.  50.  50.  50.  50.  50.]
  [ 50.  50.  50.  50.  50.  50.  50.  50.  50.  50.]
  [ 50.  50.  50.  50.  50.  50.  50.  50.  50.  50.]]

 [[ 30.  30.  30.  30.  30.  30.  30.  30.  30.  30.]
  [ 30.  30.  30.  30.  30.  30.  30.  30.  30.  30.]
  [ 30.  30.  30.  30.  30.  30.  30.  30.  30.  30.]
  [ 30.  30.  30.  30.  30.  30.  30.  30.  30.  30.]
  [ 30.  30.  30.  30.  30.  30.  30.  30.  30.  30.]
  [ 30.  30.  30.  30.  30.  30.  30.  30.  30.  30.]
  [ 30.  30.  30.  30.  30.  30.  30.  30.  30.  30.]
  [ 30.  30.  30.  30.  30.  30.  30.  30.  30.  30.]
  [ 30.  30.  30.  30.  30.  30.  30.  30.  30.  30.]
  [ 30.  30.  30.  30.  30.  30.  30.  30.  30.  30.]]]

whereas the array property returns the array with the factor applied

[19]:
print(npf.k22.array)
[[[50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]]

 [[50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]
  [50. 50. 50. 50. 50. 50. 50. 50. 50. 50.]]

 [[30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]
  [30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]
  [30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]
  [30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]
  [30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]
  [30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]
  [30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]
  [30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]
  [30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]
  [30. 30. 30. 30. 30. 30. 30. 30. 30. 30.]]]

Adding MODFLOW Stress Period Array Data

Transient array data spanning multiple stress periods must be specified as a dictionary of arrays, where the dictionary key is the stress period, expressed as a zero-based integer, and the dictionary value is the grid data for that stress period.

In the following example a RCHA package is created. First a dictionary is created that contains recharge for the model’s two stress periods. Recharge is specified as a constant value in this example, though it could also be specified as a 3-dimensional ndarray or list of lists.

[20]:
rch_sp1 = 0.01
rch_sp2 = 0.03
rch_spd = {0: rch_sp1, 1: rch_sp2}

The RCHA package is created and the dictionary constructed above is passed in as the recharge parameter.

[21]:
rch = flopy.mf6.ModflowGwfrcha(
    gwf, readasarrays=True, pname="rch", print_input=True, recharge=rch_spd
)

Retrieving Grid Array Data

Grid data can be retrieved with get_data, array, [], repr/str, or get_file_entry.

Retrieval Method

Description

get_data

Returns ndarray of data without multiplier applied, unless the apply_mult parameter is set to True

array

Returns ndarray of data with multiplier applied

[]

Returns a particular layer of data if data is layered, otherwise is an array index

repr/str

Returns string with storage information followed by ndarray repr/str

get_file_entry(layer)

Returns string containing data formatted for the MODFLOW-6 package file. If layer is not specified returns all layers, otherwise returns just the layer specified.

Below the NPF k array is retrieved using the various methods highlighted above.

First, we use the get_data method to get k as an ndarray.

[22]:
print(npf.k.get_data())
[[[10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]]

 [[10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]]

 [[10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]]]

Next, we use the array attribute which also gets k as an ndarray.

[23]:
print(npf.k.array)
[[[10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]]

 [[10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]]

 [[10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
  [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]]]

We can also use the [] to get a single layer of data as an ndarray.

[24]:
print(npf.k[0])
[[10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]]

repr gives a string representation of the data.

[25]:
print(repr(npf.k))
Layer_1{internal}
(array([[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.]]))
Layer_2{internal}
(array([[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.]]))
Layer_3{internal}
(array([[10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.],
       [10., 10., 10., 10., 10., 10., 10., 10., 10., 10.]]))

str gives a similar string representation of the data.

[26]:
print(str(npf.k))
Layer_1{internal}
([[10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]])
Layer_2{internal}
([[10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]])
Layer_3{internal}
([[10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]
 [10. 10. 10. 10. 10. 10. 10. 10. 10. 10.]])

The method get_file_entry prints the data as it would appear in a MODFLOW 6 file.

[27]:
print(npf.k.get_file_entry())
  k  LAYERED
    INTERNAL  FACTOR  1.0
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
    INTERNAL  FACTOR  1.0
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
    INTERNAL  FACTOR  1.0
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000
          10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000      10.00000000

Retrieving MODFLOW Stress Period Array Data

Transient array data can be retrieved with get_data, array, repr/str, or get_file_entry.

Retrieval Method

Description

get_data

Returns dictionary of ndarrays without multiplier applied. The dictionary key is the stress period as a zero-based integer.

array

Returns ndarray of data for all stress periods (stress period is an added dimension)

repr/str

Returns string with storage information followed by ndarray repr/str for all stress periods

get_file_entry(layer)

Returns string containing data formatted for the MODFLOW-6 package file. Use to specify a stress period (zero-based integer).

Below the RCHA recharge array is retrieved using the various methods highlighted above.

First, we use the get_data method to get the recharge data as a dictionary of ndarrays. The dictionary key is a the stress period (zero based).

[28]:
print(rch.recharge.get_data())
{0: array([[0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
       [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
       [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
       [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
       [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
       [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
       [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
       [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
       [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
       [0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]]), 1: array([[0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
       [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
       [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
       [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
       [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
       [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
       [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
       [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
       [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
       [0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03]])}

Next, we use the array attribute to get the data as an 4-dimensional ndarray.

[29]:
print(rch.recharge.array)
[[[[0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
   [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
   [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
   [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
   [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
   [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
   [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
   [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
   [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]
   [0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01]]]


 [[[0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03]
   [0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03]
   [0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03]
   [0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03]
   [0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03]
   [0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03]
   [0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03]
   [0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03]
   [0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03]
   [0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03]]]]

repr gives a string representation of the data.

[30]:
print(repr(rch.recharge))
{constant 0.03}

str gives a similar representation of the data.

[31]:
print(str(rch.recharge))
{constant 0.03}

We can use the get_file_entry method to get the data as it would appear in a MODFLOW 6 file for a specific stress period. In this case we are getting the data for stress period 2 (stress periods are treated as 0-based in FloPy).

[32]:
print(rch.recharge.get_file_entry(1))
  recharge
    CONSTANT       0.03000000

[33]:
try:
    temp_dir.cleanup()
except PermissionError:
    # can occur on windows: https://docs.python.org/3/library/tempfile.html#tempfile.TemporaryDirectory
    pass